IRMA-International.org: Creator of Knowledge
Information Resources Management Association
Advancing the Concepts & Practices of Information Resources Management in Modern Organizations

Direct-to-Consumer Genetic Testing

Direct-to-Consumer Genetic Testing
View Sample PDF
Author(s): Richard A. Stein (Princeton University, USA)
Copyright: 2011
Pages: 34
Source title: Genomics and Bioethics: Interdisciplinary Perspectives, Technologies and Advancements
Source Author(s)/Editor(s): Soraj Hongladarom (Chulalongkorn University, Thailand)
DOI: 10.4018/978-1-61692-883-4.ch005

Purchase

View Direct-to-Consumer Genetic Testing on the publisher's website for pricing and purchasing information.

Abstract

The 1953 discovery of the DNA double-helical structure by James Watson, Francis Crick, Maurice Wilkins, and Rosalind Franklin, represented one of the most significant advances in the biomedical world (Watson and Crick 1953; Maddox 2003). Almost half a century after this landmark event, in February 2001, the initial draft sequences of the human genome were published (Lander et al., 2001; Venter et al., 2001) and, in April 2003, the International Human Genome Sequencing Consortium reported the completion of the Human Genome Project, a massive international collaborative endeavor that started in 1990 and is thought to represent the most ambitious undertaking in the history of biology (Collins et al., 2003; Thangadurai, 2004; National Human Genome Research Institute). The Human Genome Project provided a plethora of genetic and genomic information that significantly changed our perspectives on biomedical and social sciences. The sequencing of the first human genome was a 13-year, 2.7-billion-dollar effort that relied on the automated Sanger (dideoxy or chain termination) method, which was developed in 1977, around the same time as the Maxam-Gilbert (chemical) sequencing, and subsequently became the most frequently used approach for several decades (Sanger et al., 1975; Maxam & Gilbert, 1977; Sanger et al., 1977). The new generations of DNA sequencing technologies, known as next-generation (second generation) and next-next-generation (third generation) sequencing, which started to be commercialized in 2005, enabled the cost-effective sequencing of large chromosomal regions during progressively shorter time frames, and opened the possibility for new applications, such as the sequencing of single-cell genomes (Service, 2006; Blow, 2008; Morozova and Marra, 2008; Metzker, 2010).

Related Content

Linkon Chowdhury, Md Sarwar Kamal, Shamim H. Ripon, Sazia Parvin, Omar Khadeer Hussain, Amira Ashour, Bristy Roy Chowdhury. © 2024. 20 pages.
Mousomi Roy. © 2024. 21 pages.
Nassima Dif, Zakaria Elberrichi. © 2024. 20 pages.
Pyingkodi Maran, Shanthi S., Thenmozhi K., Hemalatha D., Nanthini K.. © 2024. 16 pages.
Mohamed Nadjib Boufenara, Mahmoud Boufaida, Mohamed Lamine Berkane. © 2024. 16 pages.
Meroua Daoudi, Souham Meshoul, Samia Boucherkha. © 2024. 25 pages.
Zhongyu Lu, Qiang Xu, Murad Al-Rajab, Lamogha Chiazor. © 2024. 56 pages.
Body Bottom