IRMA-International.org: Creator of Knowledge
Information Resources Management Association
Advancing the Concepts & Practices of Information Resources Management in Modern Organizations

Exploring Coverage within Wireless Sensor Networks through Evolutionary Computations

Exploring Coverage within Wireless Sensor Networks through Evolutionary Computations
View Sample PDF
Author(s): Sami Habib (Kuwait University, Kuwait)
Copyright: 2009
Pages: 10
Source title: Handbook of Research on Mobile Multimedia, Second Edition
Source Author(s)/Editor(s): Ismail Khalil (Johannes Kepler University Linz, Austria)
DOI: 10.4018/978-1-60566-046-2.ch014

Purchase

View Exploring Coverage within Wireless Sensor Networks through Evolutionary Computations on the publisher's website for pricing and purchasing information.

Abstract

The evolutionary search approach has demonstrated its effectiveness in many real world applications, such as the coverage problem in wireless sensor networks. It is to place sensor devices in a service area so that the entire service area is covered. We have modeled the coverage problem as two sub-problems: floorplan and placement. The floorplan problem is to partition the service area into well-defined geometric cells, where the placement problem is to assign the sensor devices into a set of cells. Even though the search space has been transformed from continuous into discrete, the complexity of the coverage problem is computationally intensive. The objective function is to maximize the coverage of the service area while not exceeding a given budget. The merged optimization problem has been coded into the genetic algorithm (GA) and the experimental results reveal the versatility of GA to adapt and find a good solution in a short time.

Related Content

K. Jairam Naik, Annukriti Soni. © 2021. 18 pages.
Randhir Kumar, Rakesh Tripathi. © 2021. 22 pages.
Yogesh Kumar Gupta. © 2021. 38 pages.
Kamel H. Rahouma, Ayman A. Ali. © 2021. 34 pages.
Muni Sekhar Velpuru. © 2021. 19 pages.
Vijayakumari B.. © 2021. 24 pages.
Neetu Faujdar, Anant Joshi. © 2021. 41 pages.
Body Bottom