IRMA-International.org: Creator of Knowledge
Information Resources Management Association
Advancing the Concepts & Practices of Information Resources Management in Modern Organizations

Fast Beamforming of Compact Array Antenna

Fast Beamforming of Compact Array Antenna
View Sample PDF
Author(s): Chen Sun (ATR Wave Engineering Laboratories, Japan), Takashi Ohira (Toyohashi University of Technology, Japan), Makoto Taromaru (ATR Wave Engineering Laboratories, Japan), Nemai Chandra Karmakar (Monash University, Australia)and Akifumi Hirata (Kyocera Corporation, Japan)
Copyright: 2009
Pages: 18
Source title: Handbook on Advancements in Smart Antenna Technologies for Wireless Networks
Source Author(s)/Editor(s): Chen Sun (ATR Wave Engineering Laboratories, Japan), Jun Cheng (Doshisha University, Japan)and Takashi Ohira (Toyohashi University of Technology, Japan)
DOI: 10.4018/978-1-59904-988-5.ch009

Purchase

View Fast Beamforming of Compact Array Antenna on the publisher's website for pricing and purchasing information.

Abstract

In this chapter, we describe a compact array antenna. Beamforming is achieved by tuning the load reactances at parasitic elements surrounding the active central element. The existing beam forming algorithms for this reactively controlled parasitic array antennas require long training time. In comparison with these algorithms, a faster beamforming algorithm, based on simultaneous perturbation stochastic approximation (SPSA) theory with a maximum cross-correlation coefficient (MCCC) criterion, is proposed in this chapter. The simulation results validate the algorithm. In an environment where the signal-to-interference ratio (SIR) is 0 dB, the algorithm converges within 50 iterations and achieves an output SINR of 10 dB. With the fast beamforming ability and its low power consumption attribute, the antenna makes the mass deployment of smart antenna technologies practical. To give a comparison of the beamforming algorithm with one of the standard beamforming algorithms for a digital beamforming (DBF) antenna array, we compare the proposed algorithm with the least mean square (LMS) beamforming algorithm. Since the parasitic array antenna is in nature an analog antenna, it cannot suppress correlated interference. Here, we assume that the interferences are uncorrelated.

Related Content

J. Mangaiyarkkarasi, J. Shanthalakshmi Revathy. © 2024. 34 pages.
Gummadi Surya Prakash, W. Chandra, Shilpa Mehta, Rupesh Kumar. © 2024. 22 pages.
Duygu Nazan Gençoğlan. © 2024. 35 pages.
Smrity Dwivedi. © 2024. 20 pages.
Pallavi Sapkale, Shilpa Mehta. © 2024. 21 pages.
Pardhu Thottempudi, Vijay Kumar. © 2024. 43 pages.
Sathish Kumar Danasegaran, Elizabeth Caroline Britto, S. Dhanasekaran, G. Rajalakshmi, S. Lalithakumari, A. Sivasangari, G. Sathish Kumar. © 2024. 18 pages.
Body Bottom