IRMA-International.org: Creator of Knowledge
Information Resources Management Association
Advancing the Concepts & Practices of Information Resources Management in Modern Organizations

Function and Homology of Proteins Similar in Sequence: Phylogenetic Profiling

Function and Homology of Proteins Similar in Sequence: Phylogenetic Profiling
View Sample PDF
Author(s): Thomas Meinel (Max Planck Institute for Molecular Genetics, Germany)
Copyright: 2009
Pages: 24
Source title: Handbook of Research on Systems Biology Applications in Medicine
Source Author(s)/Editor(s): Andriani Daskalaki (Max Planck Institute for Molecular Genetics, Germany)
DOI: 10.4018/978-1-60566-076-9.ch008

Purchase

View Function and Homology of Proteins Similar in Sequence: Phylogenetic Profiling on the publisher's website for pricing and purchasing information.

Abstract

The function of proteins is a main subject of research in systems biology. Inference of function is now, more than ever, required by the upcoming of novel protein sequences in consequence of the discovery of new proteomes. The calculation of sequence similarity is an easily feasible way to compute protein comparisons. The comparison of complete proteomes touches one of the earliest topics in bioinformatics; the biologically meaningful organization of proteins in protein families. Several approaches that interpret function or evolutionary aspects of proteins from sequence similarity are reviewed, which in particular reflects the arsenal of techniques introduced until now. Phylogenetic profiling, a method that compares a set of genes or proteins by their presence or absence across a given set of organisms, is also presented in this chapter. Proteins in a functional context, for example, a pathway or a protein complex, are represented by identical or similar phylogenetic profiles. The detection of functional contexts by phylogenetic profiling is also playing a prospective role as an analytic tool in systems biology. Already established tools for phylogenetic profiling as well as particular biological examples based on the SYSTERS protein family data set are presented.

Related Content

David Edson Ribeiro, Valter Augusto de Freitas Barbosa, Clarisse Lins de Lima, Ricardo Emmanuel de Souza, Wellington Pinheiro dos Santos. © 2021. 15 pages.
Juliana Carneiro Gomes, Maíra Araújo de Santana, Clarisse Lins de Lima, Ricardo Emmanuel de Souza, Wellington Pinheiro dos Santos. © 2021. 12 pages.
Maíra Araújo de Santana, Jessiane Mônica Silva Pereira, Clarisse Lins de Lima, Maria Beatriz Jacinto de Almeida, José Filipe Silva de Andrade, Thifany Ketuli Silva de Souza, Rita de Cássia Fernandes de Lima, Wellington Pinheiro dos Santos. © 2021. 19 pages.
Jessiane Mônica Silva Pereira, Maíra Araújo de Santana, Clarisse Lins de Lima, Rita de Cássia Fernandes de Lima, Sidney Marlon Lopes de Lima, Wellington Pinheiro dos Santos. © 2021. 25 pages.
Adriel dos Santos Araujo, Roger Resmini, Maira Beatriz Hernandez Moran, Milena Henriques de Sousa Issa, Aura Conci. © 2021. 35 pages.
Abir Baâzaoui, Walid Barhoumi. © 2021. 21 pages.
Marcus Costa de Araújo, Luciete Alves Bezerra, Kamila Fernanda Ferreira da Cunha Queiroz, Nadja A. Espíndola, Ladjane Coelho dos Santos, Francisco George S. Santos, Rita de Cássia Fernandes de Lima. © 2021. 44 pages.
Body Bottom