IRMA-International.org: Creator of Knowledge
Information Resources Management Association
Advancing the Concepts & Practices of Information Resources Management in Modern Organizations

Hookes-Jeeves-Based Variant of Memetic Algorithm

Hookes-Jeeves-Based Variant of Memetic Algorithm
View Sample PDF
Author(s): Dipti Singh (Gautam Buddha University, India) and Kusum Deep (Department of Mathematics, Indian Institute of Technology, Roorkee, India)
Copyright: 2017
Pages: 26
Source title: Nature-Inspired Computing: Concepts, Methodologies, Tools, and Applications
Source Author(s)/Editor(s): Information Resources Management Association (USA)
DOI: 10.4018/978-1-5225-0788-8.ch018

Purchase

View Hookes-Jeeves-Based Variant of Memetic Algorithm on the publisher's website for pricing and purchasing information.

Abstract

Due to their wide applicability and easy implementation, Genetic algorithms (GAs) are preferred to solve many optimization problems over other techniques. When a local search (LS) has been included in Genetic algorithms, it is known as Memetic algorithms. In this chapter, a new variant of single-meme Memetic Algorithm is proposed to improve the efficiency of GA. Though GAs are efficient at finding the global optimum solution of nonlinear optimization problems but usually converge slow and sometimes arrive at premature convergence. On the other hand, LS algorithms are fast but are poor global searchers. To exploit the good qualities of both techniques, they are combined in a way that maximum benefits of both the approaches are reaped. It lets the population of individuals evolve using GA and then applies LS to get the optimal solution. To validate our claims, it is tested on five benchmark problems of dimension 10, 30 and 50 and a comparison between GA and MA has been made.

Related Content

Mohamed Arezki Mellal. © 2022. 9 pages.
Tahir Cetin Akinci, Ramazan Caglar, Gokhan Erdemir, Aydin Tarik Zengin, Serhat Seker. © 2022. 11 pages.
Sunanda Hazra, Provas Kumar Roy. © 2022. 16 pages.
Ragab A. El-Sehiemy, Almoataz Y. Abdelaziz. © 2022. 23 pages.
Khaled Dassa, Abdelmadjid Recioui. © 2022. 35 pages.
Anupama Kumari, Mukund Madhaw, C. B. Majumder, Amit Arora. © 2022. 21 pages.
Mandrita Mondal. © 2022. 20 pages.
Body Bottom