IRMA-International.org: Creator of Knowledge
Information Resources Management Association
Advancing the Concepts & Practices of Information Resources Management in Modern Organizations

Implementation and Performance Assessment of Biomedical Image Compression and Reconstruction Algorithms for Telemedicine Applications: Compressive Sensing for Biomedical Images

Implementation and Performance Assessment of Biomedical Image Compression and Reconstruction Algorithms for Telemedicine Applications: Compressive Sensing for Biomedical Images
View Sample PDF
Author(s): Charu Bhardwaj (Jaypee University of Information Technology, India), Urvashi Sharma (Jaypee University of Information Technology, India), Shruti Jain (Jaypee University of Information Technology, India)and Meenakshi Sood (Jaypee University of Information Technology, India)
Copyright: 2023
Pages: 28
Source title: Research Anthology on Improving Medical Imaging Techniques for Analysis and Intervention
Source Author(s)/Editor(s): Information Resources Management Association (USA)
DOI: 10.4018/978-1-6684-7544-7.ch080

Purchase


Abstract

Compression serves as a significant feature for efficient storage and transmission of medical, satellite, and natural images. Transmission speed is a key challenge in transmitting a large amount of data especially for magnetic resonance imaging and computed tomography scan images. Compressive sensing is an optimization-based option to acquire sparse signal using sub-Nyquist criteria exploiting only the signal of interest. This chapter explores compressive sensing for correct sensing, acquisition, and reconstruction of clinical images. In this chapter, distinctive overall performance metrics like peak signal to noise ratio, root mean square error, structural similarity index, compression ratio, etc. are assessed for medical image evaluation by utilizing best three reconstruction algorithms: basic pursuit, least square, and orthogonal matching pursuit. Basic pursuit establishes a well-renowned reconstruction method among the examined recovery techniques. At distinct measurement samples, on increasing the number of measurement samples, PSNR increases significantly and RMSE decreases.

Related Content

Aylin Gökhan, Kubilay Dogan Kilic, Türker Çavuşoğlu, Yiğit Uyanıkgil. © 2024. 12 pages.
Pratyush Panda, Subhalaxmi Das. © 2024. 21 pages.
Vikram Singh, Sangeeta Rani. © 2024. 17 pages.
Pancham Singh, Mrignainy Kansal, Shirshendu Lahiri, Harshit Vishnoi, Lakshay Mittal. © 2024. 19 pages.
Shreeharsha Dash, Subhalaxmi Das. © 2024. 16 pages.
V. Sathya, Shalini Parthiban, M. Megavarshini, V. Shenbagaraman, R. Ramya. © 2024. 13 pages.
Olalekan Joel Awujoola, Theophilus Enem Aniemeka, Oluwasegun Abiodun Abioye, Abidemi Elizabeth Awujoola, Fiyinfoluwa Ajakaiye, Olayinka Racheal Adelegan. © 2024. 34 pages.
Body Bottom