IRMA-International.org: Creator of Knowledge
Information Resources Management Association
Advancing the Concepts & Practices of Information Resources Management in Modern Organizations

Improving PSI-BLAST’s Fold Recognition Performance through Combining Consensus Sequences and Support Vector Machine

Improving PSI-BLAST’s Fold Recognition Performance through Combining Consensus Sequences and Support Vector Machine
View Sample PDF
Author(s): Ren-Xiang Yan (China Agricultural University, China), Jing Liu (China Agricultural University, China)and Yi-Min Tao (China Agricultural University, China)
Copyright: 2013
Pages: 9
Source title: Bioinformatics: Concepts, Methodologies, Tools, and Applications
Source Author(s)/Editor(s): Information Resources Management Association (USA)
DOI: 10.4018/978-1-4666-3604-0.ch087

Purchase


Abstract

Profile-profile alignment may be the most sensitive and useful computational resource for identifying remote homologies and recognizing protein folds. However, profile-profile alignment is usually much more complex and slower than sequence-sequence or profile-sequence alignment. The profile or PSSM (position-specific scoring matrix) can be used to represent the mutational variability at each sequence position of a protein by using a vector of amino acid substitution frequencies and it is a much richer encoding of a protein sequence. Consensus sequence, which can be considered as a simplified profile, was used to improve sequence alignment accuracy in the early time. Recently, several studies were carried out to improve PSI-BLAST’s fold recognition performance by using consensus sequence information. There are several ways to compute a consensus sequence. Based on these considerations, we propose a method that combines the information of different types of consensus sequences with the assistance of support vector machine learning in this chapter. Benchmark results suggest that our method can further improve PSI-BLAST’s fold recognition performance.

Related Content

Linkon Chowdhury, Md Sarwar Kamal, Shamim H. Ripon, Sazia Parvin, Omar Khadeer Hussain, Amira Ashour, Bristy Roy Chowdhury. © 2024. 20 pages.
Mousomi Roy. © 2024. 21 pages.
Nassima Dif, Zakaria Elberrichi. © 2024. 20 pages.
Pyingkodi Maran, Shanthi S., Thenmozhi K., Hemalatha D., Nanthini K.. © 2024. 16 pages.
Mohamed Nadjib Boufenara, Mahmoud Boufaida, Mohamed Lamine Berkane. © 2024. 16 pages.
Meroua Daoudi, Souham Meshoul, Samia Boucherkha. © 2024. 25 pages.
Zhongyu Lu, Qiang Xu, Murad Al-Rajab, Lamogha Chiazor. © 2024. 56 pages.
Body Bottom