IRMA-International.org: Creator of Knowledge
Information Resources Management Association
Advancing the Concepts & Practices of Information Resources Management in Modern Organizations

The Kolmogorov Spline Network for Authentication Data Embedding in Images

The Kolmogorov Spline Network for Authentication Data Embedding in Images
View Sample PDF
Author(s): Pierre-Emmanuel Leni (University of Franche-Comte, France), Yohan D. Fougerolle (University of Burgundy, France)and Frédéric Truchetet (University of Burgundy, France)
Copyright: 2013
Pages: 19
Source title: Efficiency and Scalability Methods for Computational Intellect
Source Author(s)/Editor(s): Boris Igelnik (BMI Research, Inc., USA)and Jacek M. Zurada (University of Louisville, USA)
DOI: 10.4018/978-1-4666-3942-3.ch005

Purchase

View The Kolmogorov Spline Network for Authentication Data Embedding in Images on the publisher's website for pricing and purchasing information.

Abstract

In 1900, Hilbert declared that high order polynomial equations could not be solved by sums and compositions of continuous functions of less than three variables. This statement was proven wrong by the superposition theorem, demonstrated by Arnol’d and Kolmogorov in 1957, which allows for writing all multivariate functions as sums and compositions of univariate functions. Amongst recent computable forms of the theorem, Igelnik and Parikh’s approach, known as the Kolmogorov Spline Network (KSN), offers several alternatives for the univariate functions as well as their construction. A novel approach is presented for the embedding of authentication data (black and white logo, translucent or opaque image) in images. This approach offers similar functionalities than watermarking approaches, but relies on a totally different theory: the mark is not embedded in the 2D image space, but it is rather applied to an equivalent univariate representation of the transformed image. Using the progressive transmission scheme previously proposed (Leni, 2011), the pixels are re-arranged without any neighborhood consideration. Taking advantage of this naturally encrypted representation, it is proposed to embed the watermark in these univariate functions. The watermarked image can be accessed at any intermediate resolution, and fully recovered (by removing the embedded mark) without loss using a secret key. Moreover, the key can be different for every resolution, and both the watermark and the image can be globally restored in case of data losses during the transmission. These contributions lie in proposing a robust embedding of authentication data (represented by a watermark) into an image using the 1D space of univariate functions based on the Kolmogorov superposition theorem. Lastly, using a key, the watermark can be removed to restore the original image.

Related Content

Bhargav Naidu Matcha, Sivakumar Sivanesan, K. C. Ng, Se Yong Eh Noum, Aman Sharma. © 2023. 60 pages.
Lavanya Sendhilvel, Kush Diwakar Desai, Simran Adake, Rachit Bisaria, Hemang Ghanshyambhai Vekariya. © 2023. 15 pages.
Jayanthi Ganapathy, Purushothaman R., Ramya M., Joselyn Diana C.. © 2023. 14 pages.
Prince Rajak, Anjali Sagar Jangde, Govind P. Gupta. © 2023. 14 pages.
Mustafa Eren Akpınar. © 2023. 9 pages.
Sreekantha Desai Karanam, Krithin M., R. V. Kulkarni. © 2023. 34 pages.
Omprakash Nayak, Tejaswini Pallapothala, Govind P. Gupta. © 2023. 19 pages.
Body Bottom