IRMA-International.org: Creator of Knowledge
Information Resources Management Association
Advancing the Concepts & Practices of Information Resources Management in Modern Organizations

Learning Bayesian Networks

Learning Bayesian Networks
View Sample PDF
Author(s): Marco F. Ramoni (Harvard Medical School, USA)and Paola Sebastiani (Boston University School of Public Health, USA)
Copyright: 2005
Pages: 4
Source title: Encyclopedia of Data Warehousing and Mining
Source Author(s)/Editor(s): John Wang (Montclair State University, USA)
DOI: 10.4018/978-1-59140-557-3.ch128

Purchase

View Learning Bayesian Networks on the publisher's website for pricing and purchasing information.

Abstract

Born at the intersection of artificial intelligence, statistics, and probability, Bayesian networks (Pearl, 1988) are a representation formalism at the cutting edge of knowledge discovery and data mining (Heckerman, 1997). Bayesian networks belong to a more general class of models called probabilistic graphical models (Whittaker, 1990; Lauritzen, 1996) that arise from the combination of graph theory and probability theory, and their success rests on their ability to handle complex probabilistic models by decomposing them into smaller, amenable components. A probabilistic graphical model is defined by a graph, where nodes represent stochastic variables and arcs represent dependencies among such variables. These arcs are annotated by probability distribution shaping the interaction between the linked variables. A probabilistic graphical model is called a Bayesian network, when the graph connecting its variables is a directed acyclic graph (DAG). This graph represents conditional independence assumptions that are used to factorize the joint probability distribution of the network variables, thus making the process of learning from a large database amenable to computations. A Bayesian network induced from data can be used to investigate distant relationships between variables, as well as making prediction and explanation, by computing the conditional probability distribution of one variable, given the values of some others.

Related Content

Md Sakir Ahmed, Abhijit Bora. © 2024. 15 pages.
Lakshmi Haritha Medida, Kumar. © 2024. 18 pages.
Gypsy Nandi, Yadika Prasad. © 2024. 16 pages.
Saurav Bhattacharjee, Sabiha Raiyesha. © 2024. 14 pages.
Naren Kathirvel, Kathirvel Ayyaswamy, B. Santhoshi. © 2024. 26 pages.
K. Sudha, C. Balakrishnan, T. P. Anish, T. Nithya, B. Yamini, R. Siva Subramanian, M. Nalini. © 2024. 25 pages.
Sabiha Raiyesha, Papul Changmai. © 2024. 28 pages.
Body Bottom