IRMA-International.org: Creator of Knowledge
Information Resources Management Association
Advancing the Concepts & Practices of Information Resources Management in Modern Organizations

Metamodel-Based Optimum Design Examples of Structures

Metamodel-Based Optimum Design Examples of Structures
View Sample PDF
Author(s): Kwon-Hee Lee (Dong-A University, Republic of Korea)and Ji-In Heo (Dong-A University, Republic of Korea)
Copyright: 2014
Pages: 10
Source title: Handbook of Research on Novel Soft Computing Intelligent Algorithms: Theory and Practical Applications
Source Author(s)/Editor(s): Pandian M. Vasant (Petronas University of Technology, Malaysia)
DOI: 10.4018/978-1-4666-4450-2.ch022

Purchase

View Metamodel-Based Optimum Design Examples of Structures on the publisher's website for pricing and purchasing information.

Abstract

In order to achieve greater fuel efficiency and energy conservation, the reduction of weight and enhancement of the performance of structures has been sought. In general, there are two approaches to reducing structural weight. One of which is to use materials that are lighter than steel and the other is to redesign the structure. However, conventional structural optimization methods using gradient-based algorithm directly have difficulties in defining complex shape design variables and preventing mesh distortions. To overcome these difficulties a metamodel-based optimization method is introduced in order to replace the true response by an approximate one. This research presents four case studies of structural design using a metamodel-based approximation model for weight reduction or performance enhancement.

Related Content

Pawan Kumar, Mukul Bhatnagar, Sanjay Taneja. © 2024. 26 pages.
Kapil Kumar Aggarwal, Atul Sharma, Rumit Kaur, Girish Lakhera. © 2024. 19 pages.
Mohammad Kashif, Puneet Kumar, Sachin Ghai, Satish Kumar. © 2024. 15 pages.
Manjit Kour. © 2024. 13 pages.
Sanjay Taneja, Reepu. © 2024. 19 pages.
Jaspreet Kaur, Ercan Ozen. © 2024. 28 pages.
Hayet Kaddachi, Naceur Benzina. © 2024. 25 pages.
Body Bottom