IRMA-International.org: Creator of Knowledge
Information Resources Management Association
Advancing the Concepts & Practices of Information Resources Management in Modern Organizations

A Method of Estimation for Magnetic Resonance Spectroscopy Using Complex-Valued Neural Networks

A Method of Estimation for Magnetic Resonance Spectroscopy Using Complex-Valued Neural Networks
View Sample PDF
Author(s): Naoyuki Morita (Kochi Gakuen College, Japan)
Copyright: 2009
Pages: 28
Source title: Complex-Valued Neural Networks: Utilizing High-Dimensional Parameters
Source Author(s)/Editor(s): Tohru Nitta (National Institute of Advanced Industrial Science and Technology, Japan)
DOI: 10.4018/978-1-60566-214-5.ch011

Purchase

View A Method of Estimation for Magnetic Resonance Spectroscopy Using Complex-Valued Neural Networks on the publisher's website for pricing and purchasing information.

Abstract

The author proposes an automatic estimation method for nuclear magnetic resonance (NMR) spectra of the metabolites in the living body by magnetic resonance spectroscopy (MRS) without human intervention or complicated calculations. In the method, the problem of NMR spectrum estimation is transformed into the estimation of the parameters of a mathematical model of the NMR signal. To estimate these parameters, Morita designed a complex- valued Hopfield neural network, noting that NMR signals are essentially complex-valued. In addition, we devised a technique called sequential extension of section (SES) that takes into account the decay state of the NMR signal. Morita evaluated the performance of his method using simulations and shows that the estimation precision on the spectrum improves when SES is used in combination the neural network, and that SES has an ability to avoid the local minimum solution on Hopfield neural networks.

Related Content

Arunaben Prahladbhai Gurjar, Shitalben Bhagubhai Patel. © 2022. 30 pages.
Meghna Babubhai Patel, Jagruti N. Patel, Upasana M. Bhilota. © 2022. 10 pages.
Vo Ngoc Phu, Vo Thi Ngoc Tran. © 2022. 27 pages.
Steven Walczak. © 2022. 17 pages.
Priyanka P. Patel, Amit R. Thakkar. © 2022. 26 pages.
Vo Ngoc Phu, Vo Thi Ngoc Tran. © 2022. 34 pages.
Sarat Chandra Nayak, Subhranginee Das, Bijan Bihari Misra. © 2022. 20 pages.
Body Bottom