IRMA-International.org: Creator of Knowledge
Information Resources Management Association
Advancing the Concepts & Practices of Information Resources Management in Modern Organizations

Modelling Propagation of Public Opinions on Microblogging Big Data Using Sentiment Analysis and Compartmental Models

Modelling Propagation of Public Opinions on Microblogging Big Data Using Sentiment Analysis and Compartmental Models
View Sample PDF
Author(s): Youjia Fang (Virginia Tech, USA), Xin Chen (Virginia Tech, USA), Zheng Song (Virginia Tech, USA), Tianzi Wang (Virginia Tech, USA)and Yang Cao (Virginia Tech, USA)
Copyright: 2020
Pages: 18
Source title: Information Diffusion Management and Knowledge Sharing: Breakthroughs in Research and Practice
Source Author(s)/Editor(s): Information Resources Management Association (USA)
DOI: 10.4018/978-1-7998-0417-8.ch044

Purchase


Abstract

Compartmental models have been used to model information diffusion on social media. However, there have been few studies on modelling positive and negative public opinions using compartmental models. This study aimed for using sentiment analysis and compartmental model to model the propagation of positive and negative opinions on microblogging big media. The authors studied the news propagation of seven popular social topics on China's Sina Weibo microblogging platform. Natural language processing and sentiment analysis were used to identify public opinions from microblogging big data. Then two existing (SIZ and SEIZ) models and a newly developed (SE2IZ) model were implemented to model the news propagation and evaluate the trends of public opinions on selected social topics. Simulation study was used to check model fitting performance. The results show that the new SE2IZ model has a better model fitting performance than existing models. This study sheds some new light on using social media for public opinion estimation and prediction.

Related Content

Christine Kosmopoulos. © 2022. 22 pages.
Melkamu Beyene, Solomon Mekonnen Tekle, Daniel Gelaw Alemneh. © 2022. 21 pages.
Rajkumari Sofia Devi, Ch. Ibohal Singh. © 2022. 21 pages.
Ida Fajar Priyanto. © 2022. 16 pages.
Murtala Ismail Adakawa. © 2022. 27 pages.
Shimelis Getu Assefa. © 2022. 17 pages.
Angela Y. Ford, Daniel Gelaw Alemneh. © 2022. 22 pages.
Body Bottom