IRMA-International.org: Creator of Knowledge
Information Resources Management Association
Advancing the Concepts & Practices of Information Resources Management in Modern Organizations

A Modified High Speed Hopfield Neural Model for Perfect Calculation of Magnetic Resonance Spectroscopy

A Modified High Speed Hopfield Neural Model for Perfect Calculation of Magnetic Resonance Spectroscopy
View Sample PDF
Author(s): Hazem El-Bakry (Mansoura University, Egypt)and Nikos Mastorakis (Technical University of Sofia, Bulgaria)
Copyright: 2010
Pages: 20
Source title: Biocomputation and Biomedical Informatics: Case Studies and Applications
Source Author(s)/Editor(s): Athina A. Lazakidou (University of Peloponnese, Greece)
DOI: 10.4018/978-1-60566-768-3.ch010

Purchase

View A Modified High Speed Hopfield Neural Model for Perfect Calculation of Magnetic Resonance Spectroscopy on the publisher's website for pricing and purchasing information.

Abstract

In this chapter, an automatic determination algorithm for nuclear magnetic resonance (NMR) spectra of the metabolites in the living body by magnetic resonance spectroscopy (MRS) without human intervention or complicated calculations is presented. In such method, the problem of NMR spectrum determination is transformed into the determination of the parameters of a mathematical model of the NMR signal. To calculate these parameters efficiently, a new model called modified Hopfield neural network is designed. The main achievement of this chapter over the work in literature (Morita, N. and Konishi, O., 2004) is that the speed of the modified Hopfield neural network is accelerated. This is done by applying cross correlation in the frequency domain between the input values and the input weights. The modified Hopfield neural network can accomplish complex dignals perfectly with out any additinal computation steps. This is a valuable advantage as NMR signals are complex-valued. In addition, a technique called “modified sequential extension of section (MSES)” that takes into account the damping rate of the NMR signal is developed to be faster than that presented in (Morita, N. and Konishi, O., 2004). Simulation results show that the calculation precision of the spectrum improves when MSES is used along with the neural network. Furthermore, MSES is found to reduce the local minimum problem in Hopfield neural networks. Moreover, the performance of the proposed method is evaluated and there is no effect on the performance of calculations when using the modified Hopfield neural networks.

Related Content

Linkon Chowdhury, Md Sarwar Kamal, Shamim H. Ripon, Sazia Parvin, Omar Khadeer Hussain, Amira Ashour, Bristy Roy Chowdhury. © 2024. 20 pages.
Mousomi Roy. © 2024. 21 pages.
Nassima Dif, Zakaria Elberrichi. © 2024. 20 pages.
Pyingkodi Maran, Shanthi S., Thenmozhi K., Hemalatha D., Nanthini K.. © 2024. 16 pages.
Mohamed Nadjib Boufenara, Mahmoud Boufaida, Mohamed Lamine Berkane. © 2024. 16 pages.
Meroua Daoudi, Souham Meshoul, Samia Boucherkha. © 2024. 25 pages.
Zhongyu Lu, Qiang Xu, Murad Al-Rajab, Lamogha Chiazor. © 2024. 56 pages.
Body Bottom