IRMA-International.org: Creator of Knowledge
Information Resources Management Association
Advancing the Concepts & Practices of Information Resources Management in Modern Organizations

Pattern Mining and Clustering on Image Databases

Pattern Mining and Clustering on Image Databases
View Sample PDF
Author(s): Marinette Bouet (LIMOS, Blaise Pascal University-Clermont-Ferrand, France), Pierre Gançarski (LSIIT-AFD-Louis Pasteur University, France), Marie-Aude Aufaure (Supélec—INRIA, France) and Omar Boussaïd (University LUMIERE Lyon, France)
Copyright: 2009
Pages: 26
Source title: Database Technologies: Concepts, Methodologies, Tools, and Applications
Source Author(s)/Editor(s): John Erickson (University of Nebraska, Omaha, USA)
DOI: 10.4018/978-1-60566-058-5.ch005

Purchase

View Pattern Mining and Clustering on Image Databases on the publisher's website for pricing and purchasing information.

Abstract

Analysing and mining image data to derive potentially useful information is a very challenging task. Image mining concerns the extraction of implicit knowledge, image data relationships, associations between image data and other data or patterns not explicitly stored in the images. Another crucial task is to organise the large image volumes to extract relevant information. In fact, decision support systems are evolving to store and analyse these complex data. This chapter presents a survey of the relevant research related to image data processing. We present data warehouse advances that organise large volumes of data linked with images, and then we focus on two techniques largely used in image mining. We present clustering methods applied to image analysis, and we introduce the new research direction concerning pattern mining from large collections of images. While considerable advances have been made in image clustering, there is little research dealing with image frequent pattern mining. We will try to understand why.

Related Content

. © 2019. 19 pages.
. © 2019. 44 pages.
. © 2019. 23 pages.
. © 2019. 18 pages.
. © 2019. 11 pages.
. © 2019. 18 pages.
. © 2019. 31 pages.
Body Bottom