IRMA-International.org: Creator of Knowledge
Information Resources Management Association
Advancing the Concepts & Practices of Information Resources Management in Modern Organizations

Performance Analysis of VGG19 Deep Learning Network Based Brain Image Fusion

Performance Analysis of VGG19 Deep Learning Network Based Brain Image Fusion
View Sample PDF
Author(s): Vijayarajan Rajangam (Vellore Institute of Technology, Chennai, India), Sangeetha N. (Jerusalem College of Engineering, Chennai, India), Karthik R. (Centre for Cyber Physical Systems, Vellore Institute of Technology, Chennai, India)and Kethepalli Mallikarjuna (RGM College of Engineering and Technology, Nandyal, India)
Copyright: 2023
Pages: 23
Source title: Research Anthology on Improving Medical Imaging Techniques for Analysis and Intervention
Source Author(s)/Editor(s): Information Resources Management Association (USA)
DOI: 10.4018/978-1-6684-7544-7.ch070

Purchase

View Performance Analysis of VGG19 Deep Learning Network Based Brain Image Fusion on the publisher's website for pricing and purchasing information.

Abstract

Multimodal imaging systems assist medical practitioners in cost-effective diagnostic methods in clinical pathologies. Multimodal imaging of the same organ or the region of interest reveals complementing anatomical and functional details. Multimodal image fusion algorithms integrate complementary image details into a composite image that reduces clinician's time for effective diagnosis. Deep learning networks have their role in feature extraction for the fusion of multimodal images. This chapter analyzes the performance of a pre-trained VGG19 deep learning network that extracts features from the base and detail layers of the source images for constructing a weight map to fuse the source image details. Maximum and averaging fusion rules are adopted for base layer fusion. The performance of the fusion algorithm for multimodal medical image fusion is analyzed by peak signal to noise ratio, structural similarity index, fusion factor, and figure of merit. Performance analysis of the fusion algorithms is also carried out for the source images with the presence of impulse and Gaussian noise.

Related Content

Aylin Gökhan, Kubilay Dogan Kilic, Türker Çavuşoğlu, Yiğit Uyanıkgil. © 2024. 12 pages.
Pratyush Panda, Subhalaxmi Das. © 2024. 21 pages.
Vikram Singh, Sangeeta Rani. © 2024. 17 pages.
Pancham Singh, Mrignainy Kansal, Shirshendu Lahiri, Harshit Vishnoi, Lakshay Mittal. © 2024. 19 pages.
Shreeharsha Dash, Subhalaxmi Das. © 2024. 16 pages.
V. Sathya, Shalini Parthiban, M. Megavarshini, V. Shenbagaraman, R. Ramya. © 2024. 13 pages.
Olalekan Joel Awujoola, Theophilus Enem Aniemeka, Oluwasegun Abiodun Abioye, Abidemi Elizabeth Awujoola, Fiyinfoluwa Ajakaiye, Olayinka Racheal Adelegan. © 2024. 34 pages.
Body Bottom