IRMA-International.org: Creator of Knowledge
Information Resources Management Association
Advancing the Concepts & Practices of Information Resources Management in Modern Organizations

Quantum-Behaved Bat Algorithm for Solving the Economic Load Dispatch Problem Considering a Valve-Point Effect

Quantum-Behaved Bat Algorithm for Solving the Economic Load Dispatch Problem Considering a Valve-Point Effect
View Sample PDF
Author(s): Pandian Vasant (Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, Seri Iskandar, Malaysia), Fahad Parvez Mahdi (University of Hyogo, Kobe, Japan), Jose Antonio Marmolejo-Saucedo (Universidad Panamericana, Facultad de Ingeniería, Ciudad de México, Mexico), Igor Litvinchev (Nuevo Leon State University, San Nicolás de los Garza, Mexico), Roman Rodriguez Aguilar (Universidad Panamericana, Escuela de Ciencias Económicas y Empresariales, Ciudad de México, Mexico)and Junzo Watada (Universiti Teknologi Petronas, Seri Iskandar, Malaysia)
Copyright: 2021
Pages: 18
Source title: Research Anthology on Advancements in Quantum Technology
Source Author(s)/Editor(s): Information Resources Management Association (USA)
DOI: 10.4018/978-1-7998-8593-1.ch004

Purchase


Abstract

Quantum computing-inspired metaheuristic algorithms have emerged as a powerful computational tool to solve nonlinear optimization problems. In this paper, a quantum-behaved bat algorithm (QBA) is implemented to solve a nonlinear economic load dispatch (ELD) problem. The objective of ELD is to find an optimal combination of power generating units in order to minimize total fuel cost of the system, while satisfying all other constraints. To make the system more applicable to the real-world problem, a valve-point effect is considered here with the ELD problem. QBA is applied in 3-unit, 10-unit, and 40-unit power generation systems for different load demands. The obtained result is then presented and compared with some well-known methods from the literature such as different versions of evolutionary programming (EP) and particle swarm optimization (PSO), genetic algorithm (GA), differential evolution (DE), simulated annealing (SA) and hybrid ABC_PSO. The comparison of results shows that QBA performs better than the above-mentioned methods in terms of solution quality, convergence characteristics and computational efficiency. Thus, QBA proves to be an effective and a robust technique to solve such nonlinear optimization problem.

Related Content

M. Suchetha, Jaya Sai Kotamsetti, Dasapalli Sasidhar Reddy, S. Preethi, D. Edwin Dhas. © 2024. 14 pages.
A. Bhuvaneswari, R. Srivel, N. Elamathi, S. Shitharth, K. Sangeetha. © 2024. 15 pages.
Srinivas Kumar Palvadi. © 2024. 28 pages.
Srinivas Kumar Palvadi. © 2024. 20 pages.
Nitika Kapoor, Parminder Singh, Kusrini M. Kom, Vishal Bharti. © 2024. 19 pages.
M. Suchetha, V. V. Rama Raghavan, Shaik Fardeen, P. V. S. Nithish, S. Preethi, D. Edwin Dhas. © 2024. 13 pages.
Damandeep Kaur, Shamandeep Singh, Simarjeet Kaur, Gurpreet Singh, Rani Kumari. © 2024. 17 pages.
Body Bottom