Creator of Knowledge
Information Resources Management Association
Advancing the Concepts & Practices of Information Resources Management in Modern Organizations

Recent Trends in Pervasive and Ubiquitous Computing: A Survey

Recent Trends in Pervasive and Ubiquitous Computing: A Survey
View Sample PDF
Author(s): Ramesh Singh (National Informatics Centre, India)
Copyright: 2010
Pages: 43
Source title: Strategic Pervasive Computing Applications: Emerging Trends
Source Author(s)/Editor(s): Varuna Godara (CEO of Sydney College of Management, Australia)
DOI: 10.4018/978-1-61520-753-4.ch001


View Recent Trends in Pervasive and Ubiquitous Computing: A Survey on the publisher's website for pricing and purchasing information.


Pervasive computing is the trend towards increasingly ubiquitous connected computing devices in the environment, a trend being brought about by a convergence of advanced electronic – and particularly, wireless - technologies and the Internet. Pervasive computing devices are not personal computers but very tiny - even invisible - devices, either mobile or embedded in almost any type of object imaginable, including cars, tools, appliances, clothing and various consumer goods – all communicating through increasingly interconnected networks. In the future these smart devices will maintain current information about their locations, the contexts in which they are being used, and relevant data about the users. The goal of researchers is to create a system that is pervasively and unobtrusively embedded in the environment, completely connected, intuitive, effortlessly portable, and constantly available. Among the emerging technologies expected to prevail in the pervasive computing environment of the future are wearable computers, smart homes and smart buildings. Among the myriad of tools expected to support these are: application-specific integrated circuitry (ASIC); speech recognition; gesture recognition; system on a chip (SoC); perceptive interfaces; smart matter; flexible transistors; reconfigurable processors; field programmable logic gates (FPLG); and micro electromechanical systems (MEMS).

Related Content

Bin Guo, Yunji Liang, Zhu Wang, Zhiwen Yu, Daqing Zhang, Xingshe Zhou. © 2014. 20 pages.
Yunji Liang, Xingshe Zhou, Bin Guo, Zhiwen Yu. © 2014. 31 pages.
Igor Bisio, Alessandro Delfino, Fabio Lavagetto, Mario Marchese. © 2014. 33 pages.
Kobkaew Opasjumruskit, Jesús Expósito, Birgitta König-Ries, Andreas Nauerz, Martin Welsch. © 2014. 22 pages.
Viktoriya Degeler, Alexander Lazovik. © 2014. 23 pages.
Vlasios Kasapakis, Damianos Gavalas. © 2014. 26 pages.
Zhu Wang, Xingshe Zhou, Daqing Zhang, Bin Guo, Zhiwen Yu. © 2014. 18 pages.
Body Bottom