IRMA-International.org: Creator of Knowledge
Information Resources Management Association
Advancing the Concepts & Practices of Information Resources Management in Modern Organizations

Robust Optimization for Smart Manufacturing Planning and Supply Chain Design in Chemical Industry

Robust Optimization for Smart Manufacturing Planning and Supply Chain Design in Chemical Industry
View Sample PDF
Author(s): Tianxing Cai (Lamar University, USA)
Copyright: 2014
Pages: 17
Source title: Smart Manufacturing Innovation and Transformation: Interconnection and Intelligence
Source Author(s)/Editor(s): ZongWei Luo (The University of Hong Kong, China)
DOI: 10.4018/978-1-4666-5836-3.ch002

Purchase

View Robust Optimization for Smart Manufacturing Planning and Supply Chain Design in Chemical Industry on the publisher's website for pricing and purchasing information.

Abstract

The depletion of natural resource, the complexity of economic markets and the increased requirement for environment protection have increased the uncertainty of chemical supply and manufacturing. The consequence of short-time material shortage or emergent demand under extreme conditions, may cause local areas to suffer from delayed product deliveries and manufacturing disorder, which will both cause tremendous economic losses. In such urgent events, robust optimization for manufacturing planning and supply chain design in chemical industry, targeting the smart manufacturing, should be a top priority. In this chapter, a novel methodology is developed for robust optimization of manufacturing planning and supply chain design in chemical industry, which includes four stages of work. First, the network of the chemical supply chain needs to be characterized, where the capacity, quantity, and availability of various chemical sources is determined. Second, the initial situation under steady conditions needs to be identified. Then, the optimization is conducted based on a developed MILP (mixed-integer linear programming) model in the third stage. Finally, the sensitivity of the manufacturing and transportation planning with respect to uncertainty parameters is characterized by partitioning the entire space of uncertainty parameters into multiple subspaces. The efficacy of the developed methodology is demonstrated via a case study with in-depth discussions.

Related Content

Kamel Mouloudj, Vu Lan Oanh LE, Achouak Bouarar, Ahmed Chemseddine Bouarar, Dachel Martínez Asanza, Mayuri Srivastava. © 2024. 20 pages.
José Eduardo Aleixo, José Luís Reis, Sandrina Francisca Teixeira, Ana Pinto de Lima. © 2024. 52 pages.
Jorge Figueiredo, Isabel Oliveira, Sérgio Silva, Margarida Pocinho, António Cardoso, Manuel Pereira. © 2024. 24 pages.
Fatih Pinarbasi. © 2024. 20 pages.
Stavros Kaperonis. © 2024. 25 pages.
Thomas Rui Mendes, Ana Cristina Antunes. © 2024. 24 pages.
Nuno Geada. © 2024. 12 pages.
Body Bottom