IRMA-International.org: Creator of Knowledge
Information Resources Management Association
Advancing the Concepts & Practices of Information Resources Management in Modern Organizations

Solar Energy Storage: An Approach for Terrestrial and Space Applications

Solar Energy Storage: An Approach for Terrestrial and Space Applications
View Sample PDF
Author(s): Ahmed Elgafy (University of Cincinnati, USA)
Copyright: 2013
Pages: 29
Source title: Handbook of Research on Solar Energy Systems and Technologies
Source Author(s)/Editor(s): Sohail Anwar (The Pennsylvania State University, Altoona, USA), Harry Efstathiadis (University at Albany- SUNY, USA)and Salahuddin Qazi (SUNY Institute of Technology, USA)
DOI: 10.4018/978-1-4666-1996-8.ch002

Purchase

View Solar Energy Storage: An Approach for Terrestrial and Space Applications on the publisher's website for pricing and purchasing information.

Abstract

With the urgent need to harvest and store solar energy, especially with the dramatic unexpected changes in oil prices, the design of new generation of solar energy storage systems has grown in importance. Besides diminishing the role of the oil, these systems provide green energy which would help reducing air pollution. Solar energy would be stored in different forms of energy; thermal, electric, hybrid thermal/electric, thermochemical, photochemical, and photocapacitors. The nature of solar energy, radiant thermal energy, magnifies the role and usage of thermal energy storage (TES) techniques. In this chapter, different techniques/technologies for solar thermal energy storage are introduced for both terrestrial and space applications. Enhancing the performance of these techniques using nanotechnology is introduced as well as using of advanced materials and structures. The chapter also introduces the main features of the other techniques for solar energy storage along with recent conducted research work. Economic and environment feasibility studies are also introduced.

Related Content

Daniel A. Beysens, Yves Garrabos, Bernard Zappoli. © 2021. 31 pages.
Sakir Amiroudine. © 2021. 23 pages.
Lin Chen. © 2021. 57 pages.
Victor Emelyanov, Alexander Gorbunov, Andrey Lednev. © 2021. 49 pages.
Nitesh Kumar, Dipankar Narayan Basu, Lin Chen. © 2021. 22 pages.
Kazuhiro Matsuda, Masanori Inui. © 2021. 35 pages.
Lin Chen. © 2021. 51 pages.
Body Bottom