IRMA-International.org: Creator of Knowledge
Information Resources Management Association
Advancing the Concepts & Practices of Information Resources Management in Modern Organizations

Speed-Accuracy Tradeoff Models of Target-Based and Trajectory-Based Movements

Speed-Accuracy Tradeoff Models of Target-Based and Trajectory-Based Movements
View Sample PDF
Author(s): Xiaolei Zhou (Capital University of Economics and Business, China)and Xiangshi Ren (Kochi University of Technology, Japan)
Copyright: 2013
Pages: 14
Source title: Biomedical Engineering and Cognitive Neuroscience for Healthcare: Interdisciplinary Applications
Source Author(s)/Editor(s): Jinglong Wu (Okayama University, Japan)
DOI: 10.4018/978-1-4666-2113-8.ch037

Purchase

View Speed-Accuracy Tradeoff Models of Target-Based and Trajectory-Based Movements on the publisher's website for pricing and purchasing information.

Abstract

A tradeoff between speed and accuracy is a very common phenomenon in many types of human motor tasks. In general, the accuracy of a movement tends to decrease when its speed increases and the speed of a movement tends to decrease with an increase in its accuracy. This phenomenon has been studied for more than a century, during which several alternative performance models that account for the tradeoff between speed and accuracy have been presented. In this chapter, the authors present a critical survey of the scientific literature that discusses speed-accuracy tradeoff models of target-based and trajectory-based movement; these two types of movement are the major popular task paradigms in studies of human-computer interactions. Some of the models emerged from basic research in experimental psychology and motor control theory, whereas others emerged from a specific need to model the interaction between users and physical devices, such as mice, keyboards, and styluses in the field of Human-Computer Interaction (HCI). This chapter summarizes these models from the perspectives of spatial constraints and temporal constraints for both target-based and trajectory-based movements.

Related Content

David Edson Ribeiro, Valter Augusto de Freitas Barbosa, Clarisse Lins de Lima, Ricardo Emmanuel de Souza, Wellington Pinheiro dos Santos. © 2021. 15 pages.
Juliana Carneiro Gomes, Maíra Araújo de Santana, Clarisse Lins de Lima, Ricardo Emmanuel de Souza, Wellington Pinheiro dos Santos. © 2021. 12 pages.
Maíra Araújo de Santana, Jessiane Mônica Silva Pereira, Clarisse Lins de Lima, Maria Beatriz Jacinto de Almeida, José Filipe Silva de Andrade, Thifany Ketuli Silva de Souza, Rita de Cássia Fernandes de Lima, Wellington Pinheiro dos Santos. © 2021. 19 pages.
Jessiane Mônica Silva Pereira, Maíra Araújo de Santana, Clarisse Lins de Lima, Rita de Cássia Fernandes de Lima, Sidney Marlon Lopes de Lima, Wellington Pinheiro dos Santos. © 2021. 25 pages.
Adriel dos Santos Araujo, Roger Resmini, Maira Beatriz Hernandez Moran, Milena Henriques de Sousa Issa, Aura Conci. © 2021. 35 pages.
Abir Baâzaoui, Walid Barhoumi. © 2021. 21 pages.
Marcus Costa de Araújo, Luciete Alves Bezerra, Kamila Fernanda Ferreira da Cunha Queiroz, Nadja A. Espíndola, Ladjane Coelho dos Santos, Francisco George S. Santos, Rita de Cássia Fernandes de Lima. © 2021. 44 pages.
Body Bottom