IRMA-International.org: Creator of Knowledge
Information Resources Management Association
Advancing the Concepts & Practices of Information Resources Management in Modern Organizations

Supercritical Carbon Dioxide Fluid and Its Application to Rankine Cycle

Supercritical Carbon Dioxide Fluid and Its Application to Rankine Cycle
View Sample PDF
Author(s): Hiroshi Yamaguchi (Doshisha University, Japan)
Copyright: 2021
Pages: 33
Source title: Handbook of Research on Advancements in Supercritical Fluids Applications for Sustainable Energy Systems
Source Author(s)/Editor(s): Lin Chen (Institute of Engineering Thermophysics, Chinese Academy of Sciences, China & University of Chinese Academy of Sciences, China)
DOI: 10.4018/978-1-7998-5796-9.ch015

Purchase

View Supercritical Carbon Dioxide Fluid and Its Application to Rankine Cycle on the publisher's website for pricing and purchasing information.

Abstract

Supercritical CO2 has been given much attention to be a working fluid in a power cycle due to its unique properties. The supercritical CO2 solar Rankine cycle system was designed and developed by using the benefit of supercritical state of CO2 to generate electric power and supply heat energy in environmentally friendly manner. The development of main components in the system are introduced and discussed particularly by focusing on the properties of CO2 for obtaining higher performance. The properties of CO2 in near critical region are also discussed in this chapter. Operating the power cycle in the supercritical region of CO2 enhances the heat transfer in energy exchanging process and improves the cycle efficiency.

Related Content

Daniel A. Beysens, Yves Garrabos, Bernard Zappoli. © 2021. 31 pages.
Sakir Amiroudine. © 2021. 23 pages.
Lin Chen. © 2021. 57 pages.
Victor Emelyanov, Alexander Gorbunov, Andrey Lednev. © 2021. 49 pages.
Nitesh Kumar, Dipankar Narayan Basu, Lin Chen. © 2021. 22 pages.
Kazuhiro Matsuda, Masanori Inui. © 2021. 35 pages.
Lin Chen. © 2021. 51 pages.
Body Bottom