IRMA-International.org: Creator of Knowledge
Information Resources Management Association
Advancing the Concepts & Practices of Information Resources Management in Modern Organizations

Supercritical Fluids as a Tool for Green Energy and Chemicals

Supercritical Fluids as a Tool for Green Energy and Chemicals
View Sample PDF
Author(s): Maša Knez Hrnčič (University of Maribor, Slovenia), Darija Cör (University of Maribor, Slovenia)and Željko Knez (Universty of Maribor, Slovenia)
Copyright: 2021
Pages: 31
Source title: Handbook of Research on Advancements in Supercritical Fluids Applications for Sustainable Energy Systems
Source Author(s)/Editor(s): Lin Chen (Institute of Engineering Thermophysics, Chinese Academy of Sciences, China & University of Chinese Academy of Sciences, China)
DOI: 10.4018/978-1-7998-5796-9.ch021

Purchase

View Supercritical Fluids as a Tool for Green Energy and Chemicals on the publisher's website for pricing and purchasing information.

Abstract

Hydrothermal conversion of biomass is a promising technology for the conversion of biomass into biofuels and biobased chemicals. This chapter is focused on the waste biomass conversion for production of biofuels and chemicals by applying sub- and supercritical fluids. One of the biggest disadvantages in biomass conversion by SCF is the extremely high energy requirement for heating the media above the water critical point (374 °C, 221 bar). The idea behind the recent research is to reduce the operating temperature and energy requirements by processing biomass with water at much higher pressures. The importance of knowledge on behavior of multicomponent systems at elevated pressures and temperatures is underlined. Methods, developed by the authors of this chapter for determination of thermodynamic and transport properties for multicomponent systems of different solid compounds and supercritical fluid under extreme conditions, are described. A future perspective of hydrothermal technology as a tool to obtain advanced materials and the possible scope for future research is also discussed.

Related Content

Daniel A. Beysens, Yves Garrabos, Bernard Zappoli. © 2021. 31 pages.
Sakir Amiroudine. © 2021. 23 pages.
Lin Chen. © 2021. 57 pages.
Victor Emelyanov, Alexander Gorbunov, Andrey Lednev. © 2021. 49 pages.
Nitesh Kumar, Dipankar Narayan Basu, Lin Chen. © 2021. 22 pages.
Kazuhiro Matsuda, Masanori Inui. © 2021. 35 pages.
Lin Chen. © 2021. 51 pages.
Body Bottom