IRMA-International.org: Creator of Knowledge
Information Resources Management Association
Advancing the Concepts & Practices of Information Resources Management in Modern Organizations

TCP for High-Speed Networks

TCP for High-Speed Networks
View Sample PDF
Author(s): Nelson Luís Saldanha da Fonseca (State University of Campinas, Brazil)and Neila Fernanda Michel (State University of Campinas, Brazil)
Copyright: 2008
Pages: 7
Source title: Encyclopedia of Internet Technologies and Applications
Source Author(s)/Editor(s): Mario Freire (University of Beira Interior, Portugal)and Manuela Pereira (University of Beira Interior, Portugal)
DOI: 10.4018/978-1-59140-993-9.ch088

Purchase

View TCP for High-Speed Networks on the publisher's website for pricing and purchasing information.

Abstract

In response to a series of collapses due to congestion on the Internet in the mid-’80s, congestion control was added to the transmission control protocol (TCP) (Jacobson, 1988), thus allowing individual connections to control the amount of traffic they inject into the network. This control involves regulating the size of the congestion window (cwnd) to impose a limit on the size of the transmission window. In the most deployed TCP variant on the Internet, TCP Reno (Allman, Floyd, & Partridge, 2002), changes in congestion window size are driven by the loss of segments. Congestion window size is increased by 1/cwnd for each acknowledgement (ack) received, and reduced to half for the loss of a segment in a pattern known as additive increase multiplicative decrease (AIMD). Although this congestion control mechanism was derived at a time when the line speed was of the order of 56 kbs, it has performed remarkably well given that the speed, size, load, and connectivity of the Internet have increased by approximately six orders of magnitude in the past 15 years. However, the AIMD pattern of window growth seriously limits efficienct operation of TCP-Reno over high-capacity links, so that the transport layer is the network bottleneck. This text explains the major challenges involved in using TCP for high-speed networks and briefly describes some of the variations of TCP designed to overcome these challenges.

Related Content

Nalini M.. © 2023. 22 pages.
Balachandar S., Chinnaiyan R.. © 2023. 19 pages.
V. A. Velvizhi, G. Senbagavalli, S. Malini. © 2023. 29 pages.
Amuthan Nallathambi, Kannan Nova. © 2023. 25 pages.
Amuthan Nallathambi, Sivakumar N., Velrajkumar P.. © 2023. 17 pages.
Nayana Hegde, Sunilkumar S. Manvi. © 2023. 18 pages.
Udayakumar K., Ramamoorthy S., Poorvadevi R.. © 2023. 26 pages.
Body Bottom