The IRMA Community
Newsletters
Research IRM
Click a keyword to search titles using our InfoSci-OnDemand powered search:
|
Tremor Identification Using Machine Learning in Parkinson's Disease
|
Author(s): Angana Saikia (North-Eastern Hill University Shillong, India), Vinayak Majhi (North-Eastern Hill University Shillong, India), Masaraf Hussain (North-Eastern Indira Gandhi Regional Institute of Health and Medical Sciences, India), Sudip Paul (North-Eastern Hill University Shillong, India)and Amitava Datta (The University of Western Australia, Australia)
Copyright: 2019
Pages: 24
Source title:
Early Detection of Neurological Disorders Using Machine Learning Systems
Source Author(s)/Editor(s): Sudip Paul (North-Eastern Hill University Shillong, India), Pallab Bhattacharya (National Institute of Pharmaceutical Education and Research (NIPER) Ahmedabad, India)and Arindam Bit (National Institute of Technology Raipur, India)
DOI: 10.4018/978-1-5225-8567-1.ch008
Purchase
|
Abstract
Tremor is an involuntary quivering movement or shake. Characteristically occurring at rest, the classic slow, rhythmic tremor of Parkinson's disease (PD) typically starts in one hand, foot, or leg and can eventually affect both sides of the body. The resting tremor of PD can also occur in the jaw, chin, mouth, or tongue. Loss of dopamine leads to the symptoms of Parkinson's disease and may include a tremor. For some people, a tremor might be the first symptom of PD. Various studies have proposed measurable technologies and the analysis of the characteristics of Parkinsonian tremors using different techniques. Various machine-learning algorithms such as a support vector machine (SVM) with three kernels, a discriminant analysis, a random forest, and a kNN algorithm are also used to classify and identify various kinds of tremors. This chapter focuses on an in-depth review on identification and classification of various Parkinsonian tremors using machine learning algorithms.
Related Content
Surinder Kaur, Gurmeet Singh.
© 2025.
32 pages.
|
Gaganjot Kaur, Shalini Sharma, Reepu.
© 2025.
18 pages.
|
Payal Sanan, Mohd Afjal.
© 2025.
32 pages.
|
Pooja Mehta, Harleen Kaur.
© 2025.
22 pages.
|
Khushi, Jaspreet Kaur, Shivani Malhan.
© 2025.
18 pages.
|
Arabinda Bhandari.
© 2025.
32 pages.
|
Reepu.
© 2025.
22 pages.
|
|
|