IRMA-International.org: Creator of Knowledge
Information Resources Management Association
Advancing the Concepts & Practices of Information Resources Management in Modern Organizations

A Two-Layer Learning Architecture for Multi-Class Protein Folds Classification

A Two-Layer Learning Architecture for Multi-Class Protein Folds Classification
View Sample PDF
Author(s): Ruofei Wang (Xiangtan University, China)and Xieping Gao (Xiangtan University, China)
Copyright: 2013
Pages: 12
Source title: Bioinformatics: Concepts, Methodologies, Tools, and Applications
Source Author(s)/Editor(s): Information Resources Management Association (USA)
DOI: 10.4018/978-1-4666-3604-0.ch041

Purchase

View A Two-Layer Learning Architecture for Multi-Class Protein Folds Classification on the publisher's website for pricing and purchasing information.

Abstract

Classification of protein folds plays a very important role in the protein structure discovery process, especially when traditional sequence alignment methods fail to yield convincing structural homologies. In this chapter, we have developed a two-layer learning architecture, named TLLA, for multi-class protein folds classification. In the first layer, OET-KNN (Optimized Evidence-Theoretic K Nearest Neighbors) is used as the component classifier to find the most probable K-folds of the query protein. In the second layer, we use support vector machine (SVM) to build the multi-class classifier just on the K-folds, generated in the first layer, rather than on all the 27 folds. For multi-feature combination, ensemble strategy based on voting is selected to give the final classification result. The standard percentage accuracy of our method at ~63% is achieved on the independent testing dataset, where most of the proteins have <25% sequence identity with those in the training dataset. The experimental evaluation based on a widely used benchmark dataset has shown that our approach outperforms the competing methods, implying our approach might become a useful vehicle in the literature.

Related Content

Linkon Chowdhury, Md Sarwar Kamal, Shamim H. Ripon, Sazia Parvin, Omar Khadeer Hussain, Amira Ashour, Bristy Roy Chowdhury. © 2024. 20 pages.
Mousomi Roy. © 2024. 21 pages.
Nassima Dif, Zakaria Elberrichi. © 2024. 20 pages.
Pyingkodi Maran, Shanthi S., Thenmozhi K., Hemalatha D., Nanthini K.. © 2024. 16 pages.
Mohamed Nadjib Boufenara, Mahmoud Boufaida, Mohamed Lamine Berkane. © 2024. 16 pages.
Meroua Daoudi, Souham Meshoul, Samia Boucherkha. © 2024. 25 pages.
Zhongyu Lu, Qiang Xu, Murad Al-Rajab, Lamogha Chiazor. © 2024. 56 pages.
Body Bottom