IRMA-International.org: Creator of Knowledge
Information Resources Management Association
Advancing the Concepts & Practices of Information Resources Management in Modern Organizations

A Spark-Based Parallel Implementation of Arithmetic Optimization Algorithm

A Spark-Based Parallel Implementation of Arithmetic Optimization Algorithm
View Sample PDF
Author(s): Maryam AlJame (Computer Engineering Department, College of Engineering and Petroleum, Kuwait University, Kuwait), Aisha Alnoori (Computer Engineering Department, College of Engineering and Petroleum, Kuwait University, Kuwait), Mohammad G. Alfailakawi (Computer Engineering Department, College of Engineering and Petroleum, Kuwait University, Kuwait)and Imtiaz Ahmad (Computer Engineering Department, College of Engineering and Petroleum, Kuwait University, Kuwait)
Copyright: 2023
Volume: 14
Issue: 1
Pages: 27
Source title: International Journal of Applied Metaheuristic Computing (IJAMC)
Editor(s)-in-Chief: Peng-Yeng Yin (Ming Chuan University, Taiwan)
DOI: 10.4018/IJAMC.318642

Purchase

View A Spark-Based Parallel Implementation of Arithmetic Optimization Algorithm on the publisher's website for pricing and purchasing information.

Abstract

Arithmetic optimization algorithm (AOA) is a recent population-based metaheuristic widely used for solving optimization problems. However, the emerging large-scale optimization problems pose a great challenge for AOA due to its prohibitive computational cost to traverse the huge solution space effectively. This article proposes a parallel Spark-AOA using Scala on Apache Spark computing platform. Spark-AOA leverages the intrinsic parallel nature of the population-based AOA and the native iterative in-memory computation support of Spark through resilient distributed datasets (RDD) to accelerate the optimization process. Spark-AOA divides the solutions population into several subpopulations that are distributed into multiple RDD partitions and manipulated concurrently. Simulation experiments on different benchmark functions with up to 1,000-dimension and three engineering design problems demonstrate that Spark-AOA outperforms considerably standard AOA and Spark-based implementations of two recent metaheuristics both in terms of run-time and solution quality.

Related Content

Abid Sabrina, Debbat Fatima. © 2024. 20 pages.
Maryam AlJame, Aisha Alnoori, Mohammad G. Alfailakawi, Imtiaz Ahmad. © 2023. 27 pages.
Trust Tawanda, Philimon Nyamugure, Elias Munapo, Santosh Kumar. © 2023. 16 pages.
Sarab Almuhaideb, Najwa Altwaijry, Shahad AlMansour, Ashwaq AlMklafi, AlBandery Khalid AlMojel, Bushra AlQahtani, Moshail AlHarran. © 2022. 22 pages.
Preeti Pragyan Mohanty, Subrat Kumar Nayak. © 2022. 32 pages.
Sajad Ahmad Rather, P. Shanthi Bala. © 2022. 39 pages.
Ines Sbai, Saoussen Krichen. © 2022. 34 pages.
Body Bottom