IRMA-International.org: Creator of Knowledge
Information Resources Management Association
Advancing the Concepts & Practices of Information Resources Management in Modern Organizations

An Efficient Handwritten Character Recognition Using Quantum Multilayer Neural Network (QMLNN) Architecture: Quantum Multilayer Neural Network

An Efficient Handwritten Character Recognition Using Quantum Multilayer Neural Network (QMLNN) Architecture: Quantum Multilayer Neural Network
View Sample PDF
Author(s): Debanjan Konar (Sikkim Manipal Institute of Technology, India) and Suman Kalyan Kar (Sikkim Manipal Institute of Technology, India)
Copyright: 2018
Pages: 15
Source title: Quantum-Inspired Intelligent Systems for Multimedia Data Analysis
Source Author(s)/Editor(s): Siddhartha Bhattacharyya (RCC Institute of Information Technology, India)
DOI: 10.4018/978-1-5225-5219-2.ch008

Purchase


Abstract

This chapter proposes a quantum multi-layer neural network (QMLNN) architecture suitable for handwritten character recognition in real time, assisted by quantum backpropagation of errors calculated from the quantum-inspired fuzziness measure of network output states. It is composed of three second-order neighborhood-topology-based inter-connected layers of neurons represented by qubits known as input, hidden, and output layers. The QMLNN architecture is a feed forward network with standard quantum backpropagation algorithm for the adjustment of its weighted interconnection. QMLNN self-organizes the quantum fuzzy input image information by means of the quantum backpropagating errors at the intermediate and output layers of the architecture. The interconnection weights are described using rotation gates. After the network is stabilized, a quantum observation at the output layer destroys the superposition of quantum states in order to obtain true binary outputs.

Related Content

Sucet Jimena Martínez-Vergara, Jaume Valls-Pasola. © 2020. 23 pages.
Joana Coutinho de Sousa, Jorge Gaspar. © 2020. 26 pages.
João P. C. Marques. © 2020. 25 pages.
George Leal Jamil. © 2020. 22 pages.
Stephen Burdon, Kyeong Kang, Grant Mooney. © 2020. 14 pages.
Yudi Fernando, Wen Xin Wah. © 2020. 14 pages.
Nasima Mohamed Hoosen Carrim. © 2020. 23 pages.
Body Bottom