IRMA-International.org: Creator of Knowledge
Information Resources Management Association
Advancing the Concepts & Practices of Information Resources Management in Modern Organizations

An Artificial Immune Dynamical System for Optimization

An Artificial Immune Dynamical System for Optimization
View Sample PDF
Author(s): Licheng Jiao (Xidian University, China), Maoguo Gong (Xidian University, China)and Wenping Ma (Xidian University, China)
Copyright: 2009
Pages: 27
Source title: Handbook of Research on Artificial Immune Systems and Natural Computing: Applying Complex Adaptive Technologies
Source Author(s)/Editor(s): Hongwei Mo (Harbin Engineering University, China)
DOI: 10.4018/978-1-60566-310-4.ch003

Purchase

View An Artificial Immune Dynamical System for Optimization on the publisher's website for pricing and purchasing information.

Abstract

Many immue-inspired algorithms are based on the abstractions of one or several immunology theories, such as clonal selection, negative selection, positive selection, rather than the whole process of immune response to solve computational problems. In order to build a general computational framework by simulating immune response process, this chapter introduces a population-based artificial immune dynamical system, termed as PAIS, and applies it to numerical optimization problems. PAIS models the dynamic process of human immune response as a quaternion (G, I, R, Al), where G denotes exterior stimulus or antigen, I denotes the set of valid antibodies, R denotes the set of reaction rules describing the interactions between antibodies, and Al denotes the dynamic algorithm describing how the reaction rules are applied to antibody population. Some general descriptions of reaction rules, including the set of clonal selection rules and the set of immune memory rules are introduced in PAIS. Based on these reaction rules, a dynamic algorithm, termed as PAISA, is designed for numerical optimization. In order to validate the performance of PAISA, 9 benchmark functions with 20 to 10,000 dimensions and a practical optimization problem, optimal approximation of linear systems are solved by PAISA, successively. The experimental results indicate that PAISA has high performance in optimizing some benchmark functions and practical optimization problems.

Related Content

P. Chitra, A. Saleem Raja, V. Sivakumar. © 2024. 24 pages.
K. Ezhilarasan, K. Somasundaram, T. Kalaiselvi, Praveenkumar Somasundaram, S. Karthigai Selvi, A. Jeevarekha. © 2024. 36 pages.
Kande Archana, V. Kamakshi Prasad, M. Ashok. © 2024. 17 pages.
Ritesh Kumar Jain, Kamal Kant Hiran. © 2024. 23 pages.
U. Vignesh, R. Elakya. © 2024. 13 pages.
S. Karthigai Selvi, R. Siva Shankar, K. Ezhilarasan. © 2024. 16 pages.
Vemasani Varshini, Maheswari Raja, Sharath Kumar Jagannathan. © 2024. 20 pages.
Body Bottom