IRMA-International.org: Creator of Knowledge
Information Resources Management Association
Advancing the Concepts & Practices of Information Resources Management in Modern Organizations

Elliptic Curve Cryptograpy

Elliptic Curve Cryptograpy
View Sample PDF
Author(s): Manuel Mogollon (University of Dallas, USA)
Copyright: 2008
Pages: 28
Source title: Cryptography and Security Services: Mechanisms and Applications
Source Author(s)/Editor(s): Manuel Mogollon (University of Dallas, USA)
DOI: 10.4018/978-1-59904-837-6.ch008

Purchase

View Elliptic Curve Cryptograpy on the publisher's website for pricing and purchasing information.

Abstract

For the same level of security that public-key cryptosystems such as RSA have, elliptic curve cryptography (ECC) offers the benefit of smaller key sizes, hence smaller memory and processor requirements. The Diffie-Hellman key exchange, ElGamal encryption, digital signatures, and the Digital Signature Algorithm (DSA) can all be implemented in ECC. This makes ECC a very attractive algorithm for wireless devices such as handhelds and PDAs, which have limited bandwidth and processing power. Running on the same platform, ECC runs more TLS/SSL transactions per second than RSA. This chapter describes the basic concepts and definitions of elliptic curve cryptography.

Related Content

Chaymaâ Boutahiri, Ayoub Nouaiti, Aziz Bouazi, Abdallah Marhraoui Hsaini. © 2024. 14 pages.
Imane Cheikh, Khaoula Oulidi Omali, Mohammed Nabil Kabbaj, Mohammed Benbrahim. © 2024. 30 pages.
Tahiri Omar, Herrou Brahim, Sekkat Souhail, Khadiri Hassan. © 2024. 19 pages.
Sekkat Souhail, Ibtissam El Hassani, Anass Cherrafi. © 2024. 14 pages.
Meryeme Bououchma, Brahim Herrou. © 2024. 14 pages.
Touria Jdid, Idriss Chana, Aziz Bouazi, Mohammed Nabil Kabbaj, Mohammed Benbrahim. © 2024. 16 pages.
Houda Bentarki, Abdelkader Makhoute, Tőkési Karoly. © 2024. 10 pages.
Body Bottom