IRMA-International.org: Creator of Knowledge
Information Resources Management Association
Advancing the Concepts & Practices of Information Resources Management in Modern Organizations

New Optimal Solutions for Real-Time Reconfigurable Periodic Asynchronous OS Tasks with Minimizations of Response Times

New Optimal Solutions for Real-Time Reconfigurable Periodic Asynchronous OS Tasks with Minimizations of Response Times
View Sample PDF
Author(s): Hamza Gharsellaoui (University of Carthago, Tunisia), Atef Gharbi (University of Carthago, Tunisia), Olfa Mosbahi (University of Carthago, Tunisia & CNR Research Council, Italy & Xidjian University, China), Mohamed Khalgui (University of Carthago, Tunisia & CNR Research Council, Italy & Xidjian University, China)and Antonio Valentini (O3neida Europe, Belgium)
Copyright: 2013
Pages: 39
Source title: Embedded Computing Systems: Applications, Optimization, and Advanced Design
Source Author(s)/Editor(s): Mohamed Khalgui (Xidian University, China), Olfa Mosbahi (University of Carthage, Tunisia)and Antonio Valentini (O3neida Europe, Belgium)
DOI: 10.4018/978-1-4666-3922-5.ch012

Purchase


Abstract

This chapter deals with Reconfigurable Uniprocessor embedded Real-Time Systems to be classically implemented by different OS tasks that we suppose independent, asynchronous, and periodic in order to meet functional and temporal properties described in user requirements. The authors define a schedulability algorithm for preemptable, asynchronous, and periodic reconfigurable task systems with arbitrary relative deadlines, scheduled on a uniprocessor by an optimal scheduling algorithm based on the EDF principles and on the dynamic reconfiguration. Two forms of automatic reconfigurations are assumed to be applied at run-time: Addition-Remove of tasks and just modifications of their temporal parameters: WCET and/or Periods. Nevertheless, when such a scenario is applied to save the system at the occurrence of hardware-software faults, or to improve its performance, some real-time properties can be violated. The authors define a new semantic of the reconfiguration where a crucial criterion to consider is the automatic improvement of the system’s feasibility at run-time by using an Intelligent Agent that automatically checks the system’s feasibility after any reconfiguration scenario to verify if all tasks meet the required deadlines. Indeed, if a reconfiguration scenario is applied at run-time, then the Intelligent Agent dynamically provides otherwise precious technical solutions for users to remove some tasks according to predefined heuristic (based on soft or hard task), or by modifying the Worst Case Execution Times (WCETs), periods, and/or deadlines of tasks that violate corresponding constraints by new ones, in order to meet deadlines and to minimize their response time. To handle all possible reconfiguration solutions, they propose an agent-based architecture that applies automatic reconfigurations in order to re-obtain the system’s feasibility and to satisfy user requirements. Therefore, the authors developed the tool RT-Reconfiguration to support these contributions that they apply to a Blackberry Bold 9700 and to a Volvo system as running example systems and we apply the Real-Time Simulator Cheddar to check the whole system behavior and to evaluate the performance of the algorithm (detailed descriptions are available at the Website: http://beru.univ-brest.fr/~singhoff/cheddar). The authors present simulations of this architecture where they evaluate the agent that they implemented. In addition, the authors present and discuss the results of experiments that compare the accuracy and the performance of their algorithm with others.

Related Content

Babita Srivastava. © 2024. 21 pages.
Sakuntala Rao, Shalini Chandra, Dhrupad Mathur. © 2024. 27 pages.
Satya Sekhar Venkata Gudimetla, Naveen Tirumalaraju. © 2024. 24 pages.
Neeta Baporikar. © 2024. 23 pages.
Shankar Subramanian Subramanian, Amritha Subhayan Krishnan, Arumugam Seetharaman. © 2024. 35 pages.
Charu Banga, Farhan Ujager. © 2024. 24 pages.
Munir Ahmad. © 2024. 27 pages.
Body Bottom