IRMA-International.org: Creator of Knowledge
Information Resources Management Association
Advancing the Concepts & Practices of Information Resources Management in Modern Organizations

Project Control Using a Bayesian Approach

Project Control Using a Bayesian Approach
View Sample PDF
Author(s): Franco Caron (Politecnico di Milano, Italy)
Copyright: 2019
Pages: 14
Source title: Advanced Methodologies and Technologies in Business Operations and Management
Source Author(s)/Editor(s): Mehdi Khosrow-Pour, D.B.A. (Information Resources Management Association, USA)
DOI: 10.4018/978-1-5225-7362-3.ch103

Purchase

View Project Control Using a Bayesian Approach on the publisher's website for pricing and purchasing information.

Abstract

The capability to elaborate a reliable estimate at completion for a project since the early stage of project execution is the prerequisite in order to provide an effective project control. The non-repetitive and uncertain nature of projects and the involvement of multiple stakeholders increase project complexity and raise the need to exploit all the available knowledge sources in order to improve the forecasting process. Therefore, drawing on a set of case studies, this chapter proposes a Bayesian approach to support the elaboration of the estimate at completion in those industrial fields where projects are denoted by a high level of uncertainty and complexity. The Bayesian approach allows the integration of experts' opinions, data records related to past projects, and data related to the performance of the ongoing project. Data from past projects are selected through a similarity analysis. The proposed approach shows a higher accuracy in comparison with the traditional formulas typical of the earned value management (EVM) methodology.

Related Content

Sajjad Nawaz Khan, Hafiz Mudassir Rehman, Mudaser Javaid. © 2022. 21 pages.
Seong-Yuen Toh. © 2022. 35 pages.
Paula Cristina Nunes Figueiredo. © 2022. 33 pages.
Deirdre M. Conway. © 2022. 24 pages.
Sriya Chakravarti. © 2022. 21 pages.
Adekunle Theophilius Tinuoye, Sylvanus Simon Adamade, Victor Ikechukwu Ogharanduku. © 2022. 26 pages.
Paula Figueiredo, Cristina Nogueira da Fonseca. © 2022. 36 pages.
Body Bottom