IRMA-International.org: Creator of Knowledge
Information Resources Management Association
Advancing the Concepts & Practices of Information Resources Management in Modern Organizations

Securing Embedded Computing Systems through Elliptic Curve Cryptography

Securing Embedded Computing Systems through Elliptic Curve Cryptography
View Sample PDF
Author(s): Elisavet Konstantinou (University of the Aegean, Greece), Panayotis E. Nastou (University of the Aegean, Greece), Yannis C. Stamatiou (University of Patras, Greece)and Christos Zaroliagis (University of Patras, Greece)
Copyright: 2013
Pages: 18
Source title: Embedded Computing Systems: Applications, Optimization, and Advanced Design
Source Author(s)/Editor(s): Mohamed Khalgui (Xidian University, China), Olfa Mosbahi (University of Carthage, Tunisia)and Antonio Valentini (O3neida Europe, Belgium)
DOI: 10.4018/978-1-4666-3922-5.ch020

Purchase

View Securing Embedded Computing Systems through Elliptic Curve Cryptography on the publisher's website for pricing and purchasing information.

Abstract

Embedded computing devices dominate our everyday activities, from cell phones to wireless sensors that collect and process data for various applications. Although desktop and high-end server security seems to be under control by the use of current security technology, securing the low-end embedded computing systems is a difficult long-term problem. This is mainly due to the fact that the embedded systems are constrained by their operational environment and the limited resources they are equipped with. Recent research activities focus on the deployment of lightweight cryptographic algorithms and security protocols that are well suited to the limited resources of low-end embedded systems. Elliptic Curve Cryptography (ECC) offers an interesting alternative to the classical public key cryptography for embedded systems (e.g., RSA and ElGamal), since it uses smaller key sizes for achieving the same security level, thus making ECC an attractive and efficient alternative for deployment in embedded systems. In this chapter, the processing requirements and architectures for secure network access, communication functions, storage, and high availability of embedded devices are discussed. In addition, ECC-based state-of-the-art lightweight cryptographic primitives for the deployment of security protocols in embedded systems that fulfill the requirements are presented.

Related Content

Babita Srivastava. © 2024. 21 pages.
Sakuntala Rao, Shalini Chandra, Dhrupad Mathur. © 2024. 27 pages.
Satya Sekhar Venkata Gudimetla, Naveen Tirumalaraju. © 2024. 24 pages.
Neeta Baporikar. © 2024. 23 pages.
Shankar Subramanian Subramanian, Amritha Subhayan Krishnan, Arumugam Seetharaman. © 2024. 35 pages.
Charu Banga, Farhan Ujager. © 2024. 24 pages.
Munir Ahmad. © 2024. 27 pages.
Body Bottom