IRMA-International.org: Creator of Knowledge
Information Resources Management Association
Advancing the Concepts & Practices of Information Resources Management in Modern Organizations

SLA Monitoring of Presence-Enabled Services: A New Approach Using Data Envelopment Analysis (DEA)

SLA Monitoring of Presence-Enabled Services: A New Approach Using Data Envelopment Analysis (DEA)
View Sample PDF
Author(s): Tapati Bandopadhyay (ICFAI Business School, India)and Pradeep Kumar (ICFAI Business School, India)
Copyright: 2010
Pages: 13
Source title: Electronic Services: Concepts, Methodologies, Tools and Applications
Source Author(s)/Editor(s): Information Resources Management Association (USA)
DOI: 10.4018/978-1-61520-967-5.ch042

Purchase

View SLA Monitoring of Presence-Enabled Services: A New Approach Using Data Envelopment Analysis (DEA) on the publisher's website for pricing and purchasing information.

Abstract

The concept of presence was initially associated with an instant messaging service, allowing an end user to recognize the presence of a peer online to send or receive messages. Now the technology has grown up to include various services like monitoring performance of any type of end user device, and services are accessible from anywhere, any time. The need for enhanced value remains the driving force behind these services, for example, Voice over Internet Protocol (VoIP) services, which is drawing tremendous research interest in services performance evaluation, measurement, benchmarking, and monitoring. Monitoring service level parameters happens to be one of the most interesting application-oriented research issues because various service consumers at the customer companies/end users’ level are finding it very difficult to design and monitor an effective SLA (Service Level Agreement) with the presence-enabled service providers. This chapter focuses on to these specific issues and presents a new approach of SLA monitoring through Data Envelopment Analysis (DEA). This extreme point approach actually can work much better in the context of SLA monitoring than general central-tendency-based statistical tools, a fact which has been corroborated by similar application examples of DEA presented in this chapter and has therefore it acts as the primary motivation to propose this new approach. Towards this end, this chapter first builds up the context of presence-enabled services (Day, Rosenburg, & Sugano, 2000), its SLA and SLA parameters, and the monitoring requirements. Then it explains the basics of DEA and its application in various other engineering and services context. Ultimately, a DEA application framework for monitoring an SLA of presence-enabled services is proposed which can serve as a clear guideline for the customers of presence-enabled services, not only for SLA monitoring but also at various other stages of implementing presence-enabled services frameworks. This approach exploits the definitive suitability of the application of DEA methods to presence-enabled service monitoring problems, and can be easily implemented by the industry practitioners.

Related Content

Azeem Khan, Noor Zaman Jhanjhi, Dayang Hajah Tiawa Binti Awang Haji Hamid, Haji Abdul Hafidz bin Haji Omar. © 2024. 30 pages.
Siva Raja Sindiramutty, Chong Eng Tan, Sei Ping Lau, Rajan Thangaveloo, Abdalla Hassan Gharib, Amaranadha Reddy Manchuri, Navid Ali Khan, Wee Jing Tee, Lalitha Muniandy. © 2024. 67 pages.
Ruchi Doshi, Kamal Kant Hiran. © 2024. 16 pages.
N. Ambika. © 2024. 9 pages.
Siva Raja Sindiramutty, Wee Jing Tee, Sumathi Balakrishnan, Sukhminder Kaur, Rajan Thangaveloo, Husin Jazri, Navid Ali Khan, Abdalla Gharib, Amaranadha Reddy Manchuri. © 2024. 54 pages.
Azeem Khan, NZ Jhanjhi, Dayang Hajah Tiawa Binti Awang Haji Hamid, Haji Abdul Hafidz bin Haji Omar. © 2024. 22 pages.
Azeem Khan, Noor Zaman Jhanjhi, Dayang Hajah Tiawa Binti Awang Haji Hamid, Haji Abdul Hafidz bin Haji Omar. © 2024. 36 pages.
Body Bottom