IRMA-International.org: Creator of Knowledge
Information Resources Management Association
Advancing the Concepts & Practices of Information Resources Management in Modern Organizations

Data-Stream-Driven Computers are Power and Energy Efficient

Data-Stream-Driven Computers are Power and Energy Efficient
View Sample PDF
Author(s): Abdelghani Renbi (EISLAB, Luleå University of Technology, Sweden)
Copyright: 2014
Pages: 16
Source title: Sustainable Practices: Concepts, Methodologies, Tools, and Applications
Source Author(s)/Editor(s): Information Resources Management Association (USA)
DOI: 10.4018/978-1-4666-4852-4.ch025

Purchase

View Data-Stream-Driven Computers are Power and Energy Efficient on the publisher's website for pricing and purchasing information.

Abstract

It is believed that data-stream-driven computing is power and energy efficient as compared to its counterpart, instruction-stream-driven computing. This latter requires memory access and memory control overheads while the processor is fetching task instructions from the memory. The programmer describes all the tasks as instructions in the program memory. On the other hand data-stream-driven computer is already configured or hardwired for a specific computing operation, no memory is required apart from data storage. In some contexts we refer to data-stream-driven computers as accelerators or single-purpose processors. This chapter discusses the benefit of data-stream-driven computing for better power and energy efficiency. We took matrix multiplication as an example application to compare the power and energy dissipations between load/store and non-instruction fetch-based architectures. We witnessed that single-purpose processor reduces almost 100% of the dynamic power when replacing the general-purpose processor. With the current mainstream transistor technology, morphware platforms that allow massive parallelism are the potential key for data-stream-driven computer implementations to saving energy in battery-powered embedded systems and to solve the dissipated power dilemma, as the heat becomes the bottleneck of traditional high frequency processors. If the same strategy is applied to mainstream computers and data center servers, we will not only reduce electricity bills but we will also contribute to greener computing by lowering the IT sector’s CO2 emissions.

Related Content

Mukul Bhatnagar, Nitin Pathak. © 2024. 16 pages.
Mitushi Singh, Mukul Bhatnagar. © 2024. 32 pages.
Vikas Sharma, Sanjay Taneja, Kshitiz Jangir, Kirti Khanna. © 2024. 15 pages.
Preet Kanwal. © 2024. 17 pages.
Kapil Sharma, Yogesh Kumar, Rajiv Khosla, Sanjay Taneja. © 2024. 16 pages.
Sanjeev Kumar, Mohammad Badruddoza Talukder, Firoj Kabir, Fahmida Kaiser. © 2024. 15 pages.
K. K. Kishore Mishra, Swati Priya, Syed Sajid Hussain, Swati Gupta. © 2024. 17 pages.
Body Bottom