IRMA-International.org: Creator of Knowledge
Information Resources Management Association
Advancing the Concepts & Practices of Information Resources Management in Modern Organizations

GPU Based Modified HYPR Technique: A Promising Method for Low Dose Imaging

GPU Based Modified HYPR Technique: A Promising Method for Low Dose Imaging
View Sample PDF
Author(s): Shrinivas D. Desai (B V B College of Engineering & Technology, India)and Linganagouda Kulkarni (Vivekanand Institute of Technology, India)
Copyright: 2017
Pages: 16
Source title: Medical Imaging: Concepts, Methodologies, Tools, and Applications
Source Author(s)/Editor(s): Information Resources Management Association (USA)
DOI: 10.4018/978-1-5225-0571-6.ch038

Purchase

View GPU Based Modified HYPR Technique: A Promising Method for Low Dose Imaging on the publisher's website for pricing and purchasing information.

Abstract

Medical imaging has grown tremendously over the decades. The computed tomography (CT) and Magnetic resonance imaging (MRI) are considered to be most widely used imaging modalities. MRI is less harmful, but one cannot underestimate the harmful side effects of CT. A recent study reveals the fact of increasing risk of cancer as a side effect for patients undergoing repeated CT scans. Hence the design of the low dose imaging protocol is about the immense importance in the current scenario. In this paper, the authors present modified highly constrained back projection (M-HYPR) as a most promising technique to address low dose imaging. Highly constrained back projection (HYPR) being iterative in nature is computational savvy, and is one of the main reasons for being neglected by CT developers. The weight matrix module, being root cause for huge computation time is modified in this work. Considerable speed up factor is recorded, as compared original HYPR (O-HYPR) on a single thread CPU implementation. The quality of the reconstructed image in each platform has been analyzed. Recorded results upholds M-HYPR algorithm, and appreciates usage of graphical processing units (GPU) in medical imaging applications.

Related Content

Sharon L. Burton. © 2024. 25 pages.
Laura Ann Jones, Ian McAndrew. © 2024. 24 pages.
Olayinka Creighton-Randall. © 2024. 14 pages.
Stacey L. Morin. © 2024. 11 pages.
N. Nagashri, L. Archana, Ramya Raghavan. © 2024. 22 pages.
Esther Gani, Foluso Ayeni, Victor Mbarika, Abdullahi I. Musa, Oneurine Ngwa. © 2024. 25 pages.
Sia Gholami, Marwan Omar. © 2024. 18 pages.
Body Bottom