IRMA-International.org: Creator of Knowledge
Information Resources Management Association
Advancing the Concepts & Practices of Information Resources Management in Modern Organizations

The Effects of Vertical Stress on the Liquefaction Potential Originated from Buildings in The Urban Areas: A Case Study

The Effects of Vertical Stress on the Liquefaction Potential Originated from Buildings in The Urban Areas: A Case Study
View Sample PDF
Author(s): Mehmet Ozcelik (Suleyman Demirel University, Turkey)
Copyright: 2020
Pages: 22
Source title: Sustainable Infrastructure: Breakthroughs in Research and Practice
Source Author(s)/Editor(s): Information Resources Management Association (USA)
DOI: 10.4018/978-1-7998-0948-7.ch015

Purchase


Abstract

Main purpose of this paper is to study the influence of vertical stress on soil liquefaction in urban areas. The literature provides limited information on vertical stress analysis of multiple footings, and, as a result, there is no accurate way to account for the effect of the foundation depth on liquefaction. Additionally, practical methods do not exist for considering the interaction between the neighboring foundations vertical stress and seismic forces in the urban area. Vertical stress distribution was calculated in examining the soil liquefaction potential exhibited by building foundations as a case study. The vertical stresses were chosen randomly for some buildings with foundation depths of 3.00 m; 4.50 and 6.00 m at the Burkent site (Burdur-Turkey). The influence of 5-storey buildings on the liquefaction potential of sandy soils was evaluated in terms of the safety factor (FS) against liquefaction along soil profile depths for different earthquakes. Standard Penetration Test (SPT) results were used based on simplified empirical procedure.

Related Content

Mukul Bhatnagar, Nitin Pathak. © 2024. 16 pages.
Mitushi Singh, Mukul Bhatnagar. © 2024. 32 pages.
Vikas Sharma, Sanjay Taneja, Kshitiz Jangir, Kirti Khanna. © 2024. 15 pages.
Preet Kanwal. © 2024. 17 pages.
Kapil Sharma, Yogesh Kumar, Rajiv Khosla, Sanjay Taneja. © 2024. 16 pages.
Sanjeev Kumar, Mohammad Badruddoza Talukder, Firoj Kabir, Fahmida Kaiser. © 2024. 15 pages.
K. K. Kishore Mishra, Swati Priya, Syed Sajid Hussain, Swati Gupta. © 2024. 17 pages.
Body Bottom